منابع مشابه
Extensions to Network Flow Interdiction on Planar Graphs
Network flow interdiction analysis studies by how much the value of a maximum flow in a network can be diminished by removing components of the network constrained to some budget. Although this problem is strongly NP-complete on general networks, pseudo-polynomial algorithms were found for planar networks with a single source and a single sink and without the possibility to remove vertices. In ...
متن کاملInterdiction Problems on Planar Graphs
We introduce approximation algorithms and strong NP-completeness results for interdiction problems on planar graphs. Interdiction problems are leader-follower games in which the leader is allowed to delete a certain number of edges from the graph in order to maximally impede the follower, who is trying to solve an optimization problem on the impeded graph. We give a multiplicative (1+ǫ)-approxi...
متن کاملHardness and approximation for network flow interdiction
In the Network Flow Interdiction problem an adversary attacks a network in order to minimize the maximum s-t-flow. Very little is known about the approximatibility of this problem despite decades of interest in it. We present the first approximation hardness, showing that Network Flow Interdiction and several of its variants cannot be much easier to approximate than Densest k-Subgraph. In parti...
متن کاملOptimal Interdiction of Illegal Network Flow
Large scale smuggling of illegal goods is a longstanding problem, with $1.4b and thousands of agents assigned to protect the borders from such activity in the US-Mexico border alone. Illegal smuggling activities are usually blocked via inspection stations or ad-hoc checkpoints/roadblocks. Security resources are insufficient to man all stations at all times; furthermore, smugglers regularly cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2010
ISSN: 0166-218X
DOI: 10.1016/j.dam.2010.04.008